Poprzednia

ⓘ Historia logiki




Historia logiki
                                     

ⓘ Historia logiki

W okresie starożytnego Rzymu znaczące dzieła logiczne pisali Galen oraz Porfiriusz.

                                     

1. Średniowiecze

We wczesnym średniowieczu doszło do zerwania ciągłości tradycji i starożytna wiedza na temat logiki na Zachodzie uległa zapomnieniu. Niektóre prace przetrwały dzięki tłumaczeniom na język arabski czy hebrajski, i w późniejszych wiekach od odrodzenia XII wieku były ponownie odkrywane przez uczonych zachodnich. Starożytna tradycja logiczna została przekazana także w pracach Boecjusza. Jego tłumaczenia wraz z komentarzem Isagoge ang. Porfiriusza, Kategorii ang. i O interpretacji ang. Arystotelesa, były jednymi z nielicznych prac logicznych znanych szeroko przed XII w. Do prac oryginalnych Boecjusza należały De Topicis Differentiis ang. odwołujące się do prac Temistiusza i Cycerona oraz De divisione.

Wiek XII przyniósł szerokie odrodzenie intelektualne i powrotne przyswojenie wielu prac starożytnych. Od XIII wieku oparta o prace znane przed renesansem XII wieku określana była jako stara logika logica vetus, w odróżnieniu od nowej logiki logica modernorum.

Od tego okresu logika przestała być jedynie komentowaniem starożytnych autorów. Od czasów Abelarda, przez cały wiek XIV rozwijają się nowe gałęzie logiki. Jej zastosowania były bardzo różnorodne. Np. celem Ars generalis ultima Rajmunda Llulla było zastosowanie logiki do nawracania muzułman.

Zdaniem Józefa Marii Bocheńskiego późne średniowiecze, obok starożytnej Grecji w latach 350-200 p.n.e. oraz współczesności, stanowi jeden z trzech okresów największego rozwoju tej dyscypliny.

                                     

2. Logika nowożytna

Potrzeby nowoczesnej matematyki stanowiły przyczynę rozwoju nowożytnych rachunków logicznych. Najważniejsza zdobycz nowoczesnej logiki, czyli rachunek kwantyfikatorów nie powstał w ramach dalszego rozwijania logiki starożytnej. Narodził się w ścisłym związku ze specyficznie nowożytnymi rozważaniami matematycznymi związanymi z działaniami nieskończonymi a w szczególności pojęciami ciągłości i granicy, podstawowymi dla analizy matematycznej. Tak więc pojęcia pochodnej i całki od chwili swojego powstania w rozważaniach Newtona i Leibniza przez przeszło półtora wieku pozostają pojęciami intuicyjnie zrozumiałymi, choć pozbawionymi właściwych definicji w sensie obecnych wymagań. Rozważania o wielkościach nieskończenie małych robią wrażenie bałamutnych spekulacji. Mimo to właściwość wyników tych rozważań świadczy, iż twórcy tych pojęć właściwie rozumieli ich sens. Rozumienie wyprzedza więc zdolność formalnie precyzyjnego formułowania.

Dopiero półtora wieku wyrobienia myślowego w algebraicznym operowaniu tymi pojęciami doprowadziło do odkrycia przez Cauchyego właściwej definicji granicy ciągu nieskończonego. Jest to jeden z pierwszych kroków w historii, gdy zaczyna się jawnie i świadomie stosuje się pojęcie kwantyfikatora. Wcześniej od Chauchyego i bardziej konsekwentnie używał zwrotów kwantyfikatorowych Bernard Bolzano. Jednakże Bolzano nie wywarł znaczącego wpływu na naukę matematyki w swej epoce. W swoich badaniach koncentrował się na rozważaniach filozoficznych.